
Docker ImplementationDocker Implementation
Version 2Version 2

TRIUMF ATLAS Tier-1TRIUMF ATLAS Tier-1

by

Denice Deatrich

Last update:

2017-03-27

Version 1

Index

1 Introduction...2
2 Getting Docker..2
3 Pre-install Checklist...3

3.1 Storage preparation...3
3.2 Network setup...3

4 Installation...4
4.1 Docker Engine installation and configuration..4

4.1.1 /etc/sysconfig/docker-network...4
4.1.2 /etc/sysconfig/docker-storage-setup...5
4.1.3 /etc/sysconfig/docker...5

4.1.3.1 External Images...6
5 Docker Distribution installation and configuration..6

5.1Trust issues...7
5.2 Secure Transport..7
5.3 Storage...7
5.4 Installation...8

5.4.1 /etc/docker-distribution/registry/config.yml...8
5.4.2 Generate the file: htpasswd..9

5.5Starting the registry..9
6 Image signing...10

6.1 Using atomic..11
6.2 Using notary...11

7 Image building...11
7.1 Yum stanzas...12
7.2 Final image setup...12

8 Importing Images to the Registry..13
9 Docker Containers...14

9.1 Running Docker containers...14
9.1.1 Bind mounts...14
9.1.2 Port Mappings..15
9.1.3 Hostnames and IP addresses..16

9.2 Docker and Ansible..16
10 Next Steps...17

10.1 Distribution host..17
10.2 Logging..17
10.3 Image Maintenance and Tracking..18

11 Vocabulary...18
12 Appendix..18

12.1 Docker Registry YAML initial configuration...18

Docker Implementation 1

 Introduction Version 1

1 Introduction

 The time has come to investigate using Docker, a Containers-based technology, for worker node
deployment. Worker nodes, because of their uniformity in configuration and requirements, are
good candidates for Containers. With KVM virtualization for example, there is much more over-
head in process, memory and disk space running KVM guests for each worker. With Containers a
much more light-weight environment is needed to sustain a worker implementation – system-wide
changes are shared – only the application is sand-boxed.

This document summarizes the initial setup and experience using Docker for a worker node infra-
structure. As always at the Tier-1 we like to initially investigate new technologies assuming a
'scratch' implementation, where we start from the basics to better understand it. Thus, though I
show how to access external Docker images, I focus instead on building and deploying our own.

Because we now use Ansible to manage server configurations this document will explain deploy-
ment by showing both the commands and configurations needed, as well as some associated Ansi-
ble role-based task snippets.

The Docker infrastructure documented here includes installation, configuration and run-time exam-
ples for:

• Docker Engine – the software running on the host that sponsors containers

• Docker Registry/Distribution – software that provides storage, searching and retrieval of
docker images

• Image building – how to build you own container images

• Docker Containers – run-time considerations

2 Getting Docker

The Red Hat implementation of Docker is not deployed in the mainstream installation base. Instead
it is made available by Red Hat in their 'extras' channel – this description is on their web site1:

Red Hat is introducing a new channel in the Red Hat Customer Portal for Red Hat
Enterprise Linux called “Extras.” The Extras channel is intended to give customers access
to select, rapidly evolving technologies. These technologies may be updated more
frequently than they would otherwise be in a Red Hat Enterprise Linux minor release. The
technologies delivered in the Extras channel are fully supported.

Over time, these technologies will continue to mature and stabilize and may eventually be
added to the Red Hat Enterprise Linux channel to which the Red Hat Enterprise Linux life-
cycle policies apply.

1 https://access.redhat.com/support/policy/updates/extras

2 Configuration Management

https://access.redhat.com/support/policy/updates/extras

Version 1 Getting Docker

Note that this does not guarantee that the RHEL implementation of Docker will always be there. At
this point in time, Docker for RHEL 7 is re-built and published by both CentOS and Scientific
Linux (SL). As the CentOS versions were more recent at the time of initial testing they have been
mirrored by us, and the software can be installed at the Tier-1 using our t1-release-rh-extras RPM.

This document is based on our experience running Docker on SL; however as usual it applies
equally to a CentOS experience.

Docker Engine RPMs for SL and CentOS 6 can be found in EPEL, however they are much older
versions, and have no supported path forward1. However Docker on SL7 systems can run both SL6
and SL7 application containers. You give up some disk space in running SL6 containers on an
SL7 engine because you necessarily need to install SL6-based supporting libraries for any SL6 con-
tainer.

3 Pre-install Checklist

3.1 Storage preparation

The default behaviour of the Red Hat RPMs is to use loopback devices if you have made no provi-
sion for storage for your containers. Loopback devices should not be used in production; you will
get a warning when you use them:

Usage of loopback devices is strongly discouraged for production use. Either use `--stor-
age-opt dm.thinpooldev` or use `--storage-opt dm.no_warn_on_loop_devices=true` to
suppress this warning.

Moreover, the server should be configured with the necessary spare disk space, either as complete
LUNs or devices, or as complete volume groups. In this document I use a spare volume group
named vg1 for our thin-provisioned storage for the running containers.

Another issue is local docker image storage. Each worker docker engine may have a number of
pulled local images for testing and validation. Rather than storing these in the default location,
/var/lib/docker, I decide to locate them in a specific directory not used by the OS, with adequate
space. It is mounted as /docker

3.2 Network setup

I did not want to use the default bridging setup on 172.17.0.0/16 provided by the docker RPMs –
this is an issue to revisit later. In initial testing that private IP space is reported to the condor server
remotely, where that space is not route-able. Instead I decided to bridge to our existing private net-
work on 10.0.0.0/16, which is accessible to grid servers in the data centre. To that end I configure

1 https://access.redhat.com/solutions/1378023

Docker Implementation 3

https://access.redhat.com/solutions/1378023

 Pre-install Checklist Version 1

the bridge on the Docker engine node ahead of time using an Ansible role. In this document the
name of the bridge is br0.

In our data centre each blade chassis housing worker nodes has a local /24 subnet range in our pri-
vate 10.0.0.0/16 space – e.g. 10.0.3.0/24. At this early phase of testing I further restrict the IP range
for running containers to a fixed CIDR-range in a unique /28 group within the blade chassis /24
group. This is partly to avoid address clashes with other addresses used in on-going OpenStack test-
ing on the same test blade chassis. One of the advantages of this setup is that running containers
have a well-known IP address and hostname. As you will see, the container sets it hostname accord-
ingly, and Ansible renames the container to match that hostname.

10.0.0.0/16 10.0.3.0/24→

 10.0.3.1 (Engine 1 of 14)→

 10.0.3.144/28→

 10.0.3.2 (Engine 2 of 14)→

 10.0.4.0/24→

4 Installation

4.1 Docker Engine installation and configuration

For the Tier-1 I install the local release rpm on the Docker Engine worker node host for the Red Hat
Extras repository, and then install the docker packages:

yum install t1-release-rh-extras
yum –enablerepo=rh-extras install docker atomic

A few configuration files need to be modified before you enable and start docker in daemon mode.

These files need to be modified to address issues specific to our data centre. The configuration file
differences are enumerated below; an Ansible Docker Engine role was used to configure the host:

4.1.1 /etc/sysconfig/docker-network

this is just an example for this test blade
diff docker-network docker-network.original
2,3c2
< DOCKER_NETWORK_OPTIONS="--ipv6=false --mtu=9000 –bridge=br0 --fixed-
cidr=10.0.3.144/28"
<

4 Configuration Management

Version 1 Installation

> DOCKER_NETWORK_OPTIONS=

• I want a customized network bridge setup

• IPv6 is disabled at this time

• You need to explicitly give the MTU if it is not the default 1500

4.1.2 /etc/sysconfig/docker-storage-setup

diff docker-storage-setup docker-storage-setup.original
5,7d4
<
< VG='vg1'
<

• I use the free volume group here

4.1.3 /etc/sysconfig/docker

diff docker docker.original
4c4
< OPTIONS='--selinux-enabled=false -g /docker'

> OPTIONS='--selinux-enabled'
13d12
< ADD_REGISTRY='--add-registry pps04.lcg.triumf.ca:5000'
19c18
< BLOCK_REGISTRY='--block-registry docker.io'

> # BLOCK_REGISTRY='--block-registry'
25d23
< INSECURE_REGISTRY='--insecure-registry pps04.lcg.triumf.ca:5000'
34c32
< DOCKER_TMPDIR=/var/tmp

> # DOCKER_TMPDIR=/var/tmp
44,47d41

• during initial testing I turn SELinux off

• I move the root of the docker daemon runtime to /docker ; as already mentioned the
default otherwise is /var/lib/docker. We need some space to grow while we under-
stand how many images we need to keep locally on the node.

• I block access to images at docker.io1. Instead we will use a local, private registry
running on host pps04.lcg.triumf.ca which is firewalled off from the world. By de-
fault Docker registries run on port 5000, but can obviously run on any unprivileged
port. Initially the registry host will not be using a secure protocol; thus it must be
explicitly labelled insecure in the configuration before a Docker engine can success-
fully interact with it.

1 https://docs.docker.com/docker-hub/repos/

Docker Implementation 5

https://docs.docker.com/docker-hub/repos/

 Installation Version 1

• I switch to using /var/tmp for temporary files; the default temporary file location
would otherwise be /var/lib/docker/tmp/

Once these files are changed one can enable and start docker:

systemctl enable docker
systemctl start docker

4.1.3.1 External Images

For the Tier-1 data centre, our light-path nodes cannot get to the commerical network – docker.io or
redhat.com - without a proxy. This is possible in the /etc/sysconfig/docker with a setting like:

https_proxy=somehost.triumf.ca:3130

However, this also confuses your local pulls, which I believe try to use the proxy to get all images.

5 Docker Distribution installation and
configuration

There are two branches of software that provide a Docker Registry:

1. The legacy registry (v1) which you get when you install the docker-registry RPM

2. The next generation (v2) registry provided by the docker-distribution RPM

It is time to move on to Docker Distribution – v1 is deprecated, and is ugly to configure. Note how-
ever that Docker Distribution is still missing a functional search interface1; this is tracked in this
github issue URL:

 https://github.com/docker/distribution/issues/206

In the previous version of this document2 skeletal instructions on setting up a Docker Registry were
added. Here we move on to the v2 configuration. Though the phrase 'registry' is often used in this
document we are now referring to the v2 registry.

I use host roc-policy-sb.triumf.ca for an initial local test v2 registry. The registry daemon is config-
ured to run on the default port, 5000. Only data centre nodes are allowed to access this port at this
time, but when it is moved to a permanent host and home it would be opened up.

1 https://bugzilla.redhat.com/show_bug.cgi?id=1277572
2 https://twiki.atlas-canada.ca/pub/AtlasCanada/TRIUMFDocker/Tier1Docker-v1.pdf

6 Configuration Management

https://twiki.atlas-canada.ca/pub/AtlasCanada/TRIUMFDocker/Tier1Docker-v1.pdf
https://bugzilla.redhat.com/show_bug.cgi?id=1277572
https://github.com/docker/distribution/issues/206

Version 1 Docker Distribution installation and configuration

5.1 Trust issues

The goal with running a private and/or local registry is to consider some trust issues like securely
signing images, as well as securely transporting images. Signing images is a work in progress –
we will look later at two technologies for image signing – Project Atomic and Docker Notary.

Here are a some useful links to read concerning container security:

• https://blog.docker.com/2013/11/introducing-trusted-builds/

• https://access.redhat.com/blogs/766093/posts/1976473

• https://titanous.com/posts/docker-insecurity

• https://thenewstack.io/assessing-the-state-current-container-security/

• http://rhelblog.redhat.com/2015/09/03/what-is-deep-container-inspection-dci-and-why-is-it-important/

5.2 Secure Transport

While you can install an insecure (http-type) registry, you will be limited with authorization op-
tions in such a setting. Instead we will enable a TLS https-type registry using a host x509 certifi-
cate signed by the national grid certificate authority, in our case Grid Canada1. With grid CRLs
in place via the fetch-crl RPM, and the host certificate and key in place as /etc/grid-
security/hostcert.pem and /etc/grid-security/hostkey.pem we can use this configuration in the
config.yml file below to secure our registry.

5.3 Storage

Before installing the software a file system is created with enough grow-able space for the test
environment. The mount point is named /data/docker/ and it will house the container images as
well as a scratch area for playing with images.

An active registry using local disk storage may be an impediment, especially if hundreds of
workers pull images from it. The registry software supports many storage types, mostly 'cloud'
types with special high-availability and distributed fast-access storage configurations such as
azure, gcs, s3, swift and oss. However for our tests we use the 'filesystem' storage type. I make
use of a couple of large hardware-raid-based partitions and create a stripe zero mirror of them
with LVM, yielding a fairly performant yet reliable local file-system implementation.

1 https://cert.gridcanada.ca/pki/pub

Docker Implementation 7

http://rhelblog.redhat.com/2015/09/03/what-is-deep-container-inspection-dci-and-why-is-it-important/
https://cert.gridcanada.ca/pki/pub
https://blog.docker.com/2013/11/introducing-trusted-builds/
https://thenewstack.io/assessing-the-state-current-container-security/
https://titanous.com/posts/docker-insecurity
https://access.redhat.com/blogs/766093/posts/1976473

 Docker Distribution installation and configuration
Version 1

5.4 Installation

Install the RPM:

yum –enablerepo=rh-extras install docker-distribution,docker

Though docker is not needed for a local registry I install it to be able to import and push images
on the same node in this test environment.

Before enabling and starting the daemon I modify the only configuration file, config.yml, to suit
our environment.

5.4.1 /etc/docker-distribution/registry/config.yml

Following is the diff output for our configuration. The 'rootdirectory' points into the LVM raid-0
mirror. The logging level is set to debug with text-mode formatting, and our certificate paths are
added under the 'tls' area.

Additionally we will test a basic-realm http-style authentication with user and password.

diff config.yml config.yml.2258.2017-03-24\@17\:50\:56~
1,2d0
< ---
< ## to avoid ipv6 here we use the ipv4 address as the http addr
5,8d2
< # level: info
< level: debug
< # formatter: logstash
< formatter: text
12,13d5
< delete:
< enabled: true
17c9
< rootdirectory: /data/docker/registry

> rootdirectory: /var/lib/registry
19,28c11
< addr: 142.90.90.109:5000
< host: https://roc-policy-sb.triumf.ca:5000
< tls:
< certificate: /etc/grid-security/hostcert.pem
< key: /etc/grid-security/hostkey.pem
< auth:
< htpasswd:
< realm: basic-realm
< path: /etc/docker-distribution/registry/registry_passwd
<

> addr: :5000

8 Configuration Management

Version 1 Docker Distribution installation and configuration

5.4.2 Generate the file: htpasswd

There is a useful recipe on using htpasswd in a registry on the IBM web site1. To use the '-B' op-
tion to htpasswd at least a RHEL-7 based version of httpd-tools is needed:

cd /etc/docker-distribution/registry
htpasswd -Bc ./registry_passwd t1user
New password:
Re-type new password:
Adding password for user t1user
chmod 400 registry_passwd

Now we can test it from a remote Docker client:

docker login https://roc-policy-sb.triumf.ca:5000
Username: t1user
Password:
Email:
WARNING: login credentials saved in /root/.docker/config.json
Login Succeeded
cd /root/.docker/
ls -la
total 12
drwx------ 2 root root 4096 Mar 24 18:13 .
dr-xr-x---. 7 root root 4096 Mar 24 18:13 ..
-rw------- 1 root root 116 Mar 24 18:13 config.json
cat config.json
{
 "auths": {
 "https://roc-policy-sb.triumf.ca:5000": {
 "auth": "dDF1c2VyOnNocmdnZC4u",
 "email": ""
 }
 }
}

5.5 Starting the registry

There is a client-side issue that we must take care of for any host that accesses the registry when
using non-commercial x509 certificates – make sure that the CA certificate is in the expected
place in the /etc/docker tree. If you are missing it, then docker will let you know about it:

x509: certificate signed by unknown authority. If this private registry
supports only HTTP or HTTPS with an unknown CA certificate, please add
`--insecure-registry roc-policy-sb.triumf.ca:5000` to the daemon's
arguments. In the case of HTTPS, if you have access to the registry's CA
certificate, no need for the flag; simply place the CA certificate at
/etc/docker/certs.d/roc-policy-sb.triumf.ca:5000/ca.crt

1 https://www.ibm.com/developerworks/library/l-docker-private-reg/

Docker Implementation 9

https://www.ibm.com/developerworks/library/l-docker-private-reg/

 Docker Distribution installation and configuration
Version 1

Thus in our case with host roc-policy-sb.triumf.ca I create the directory corresponding to the
fully-qualified host name and port, and copy the CA certificate into place:

 # cd /etc/docker/certs.d/
 # mkdir roc-policy-sb.triumf.ca:5000
 # cd roc-policy-sb.triumf.ca:5000
 # cp -p /etc/grid-security/certificates/GridCanada.pem ca.crt

Now the Docker Distribution registry can be enabled and started:

systemctl enable docker-distribution
systemctl start docker-distribution

6 Image signing

I need to flesh out this section – this is a work in progress. At this time there is a blocking bug with
Red Hat's atomic implementation that is apparently fixed very recently and therefore should show
up in the 'extras' repository within a few weeks. The well-known issue presents with a get_manifest
error:

atomic --debug sign docker.io/deatrich/sl6-umd3:test3
Namespace(_class=<class 'Atomic.sign.Sign'>, assumeyes=False, debug=True, func='sign',
gnupghome='/root/.gnupg', images=['docker.io/deatrich/sl6-umd3:test3'],
sign_by='docker@lcg.triumf.ca', signature_path=None)
[
 {
 "search": true,
 "hostname": "registry-1.docker.io",
 "name": "docker.io",
 "secure": true
 }
]

Traceback (most recent call last):
 File "/bin/atomic", line 188, in <module>
 sys.exit(_func())
 File "/usr/lib/python2.7/site-packages/Atomic/sign.py", line 79, in sign
 manifest = ri.get_manifest()
 File "/usr/lib/python2.7/site-packages/Atomic/discovery.py", line 41, in
get_manifest
 assert(self.fqdn is not None)

In the case of Docker 'notary', there is the annoying issue of the lack of RPM packaging for these
Docker tools. I am able to build notary client and server from source, so I can generate RPMs my-
self. If Docker Compose is really needed then I need to figure out how to generate RPMs for them.
I am proceeding with some testing first with the notary client.

10 Configuration Management

Version 1 Image signing

6.1 Using atomic

To be continued.

6.2 Using notary

To be continued.

7 Image building

I used another test node already installed with SL6 to build some SL images for containers. A test
build system should be considered expendable, since mistakes in building test images might over-
write files or render it inoperable – do not use a production system for this purpose.

The Docker 'contrib' area on github has a number of example scripts that can be used to build im-
ages, depending on your underlying build tools. For our needs I modified the 'mkimage-yum.sh1'
script. Our modified script is available at the URL2 in the footnote. It essentially creates an image
in a few yum stanzas into a target directory using yum. A few of the options for yum are important,
as they allow us to install into an alternate root, selecting only mandatory packages without accom-
panying documentation; they are:

• —releasever

• —installroot

• --setopt=tsflags=nodocs

• --setopt=group_package_types=mandatory

 The script writes into a target directory, which is tarred and gzipped at the end. It is this tarball
which is copied to a working directory on the registry node, where it is later imported into the reg-
istry.

The script first sets up the bare minimum number of device files in the target area. Note that the
Tier-1 release RPMs use a yum variable that determines if the mirror is accessed by NFS or by
HTTP. For a docker image we want to avoid NFS since it introduced complexity in the container
setup, so the variable gets set to an HTTP URL at the end of the script.

1 https://github.com/docker/docker/blob/master/contrib/mkimage-yum.sh
2 http://grid.triumf.ca/share/

Docker Implementation 11

http://grid.triumf.ca/share/
https://github.com/docker/docker/blob/master/contrib/mkimage-yum.sh

 Image building Version 1

7.1 Yum stanzas

These are descriptions of the yum stanzas invoked in the script. By breaking it down we can in-
spect disk space used so far at each step.

 1. Because we wish to use the local mirror for our installation I first install the needed Tier-1
release RPMs in the first 'yum install' stanza. This of course drags in a minimal base sys-
tem.

 a) Size: 333 MB

 2. Then the script does a yum group-install of core and development.

 a) Size: 517 MB

 3. The next stanza installs a list of packages that we always install on workers in the Tier-1.
(This could be skipped I think, relying instead on the HEP_Oslibs_SL6 RPM to pull in de-
pendencies)

 a) Size: 1.1 GB

 4. Then we install the UMD-3 middleware.

 a) Size: 1.7 GB

 5. Finally we install HEP_Oslibs_SL6 and condor

 a) Size: 1.8 GB

7.2 Final image setup

After the software is installed the script expunges any remaining space-gobbling features like man
pages, language files, icons, etc. and then the size falls to 1.5 GB.

At the end of the script we add local customization – the group and user configuration is appended
to passwd, shadow, group, gshadow in the target etc directory; the Tier-1 profile is added as well as
the local condor configuration. A tarball is created, and the final size of this file is 506 MB.

To create a truly portable image for use outside of the Tier-1, we could use release RPMs from
global open HTTP mirrors instead.

The final 'local' configuration could also be done on the container at launch time, or could be ap-
plied to a separate layered image, so that the generic image would be untainted.

As part of the image creation we have installed a locally-built RPM named dumb-init. The dumb-
init1 application is useful in container environments because it allows better control over launch-
time commands. See ahead in the Container section on how it is used.

1 https://github.com/Yelp/dumb-init

12 Configuration Management

https://github.com/Yelp/dumb-init

Version 1 Image building

8 Importing Images to the Registry

The syntax used for importing images into a registry is:

Usage: docker import [OPTIONS] file|URL|- [REPOSITORY[:TAG]]

We import the tarball and then 'tag' it with a repository group and tag name:
docker import eight-sl6.tar.gz sl6:umd3condv4
sha256:762758303a84d2d8eb3ad690b2807ced68f7302c268335b33929ce0aadda0773

docker images ### it is imported but not yet tagged:
REPOSITORY TAG IMAGE ID CREATED SIZE
sl6 umd3condv4 762758303a84 21 seconds ago 857.6 MB
pps04.lcg.triumf.ca:5000/sl6-umd3condv3 latest bb7c8d288fee 3 days ago 1.445 GB
sl6 umd3condv3 bb7c8d288fee 3 days ago 1.445 GB
pps04.lcg.triumf.ca:5000/sl6-umd3condv2 latest 7d49ace6c693 6 days ago 1.391 GB
. . .

docker tag sl6:umd3condv4 pps04.lcg.triumf.ca:5000/sl6-umd3condv4
docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
pps04.lcg.triumf.ca:5000/sl6-umd3condv4 latest 762758303a84 4 minutes ago 857.6 MB
sl6 umd3condv4 762758303a84 4 minutes ago 857.6 MB
pps04.lcg.triumf.ca:5000/sl6-umd3condv3 latest bb7c8d288fee 3 days ago 1.445 GB
sl6 umd3condv3 bb7c8d288fee 3 days ago 1.445 GB
pps04.lcg.triumf.ca:5000/sl6-umd3condv2 latest 7d49ace6c693 6 days ago 1.391 GB
. . .

Finally we push it officially so that it is seen by clients:
docker push pps04.lcg.triumf.ca:5000/sl6-umd3condv4
The push refers to a repository [pps04.lcg.triumf.ca:5000/sl6-umd3condv4]
2d4dc4e96366: Preparing
2d4dc4e96366: Pushing [======>] 110.1 MB/857.6 MB
. . .
2d4dc4e96366: Image successfully pushed
Pushing tag for rev [762758303a84] on
 {http://pps04.lcg.triumf.ca:5000/v1/repositories/sl6-umd3condv4/tags/latest}

Now clients can see it:
[root@wn024 ~]# docker search sl6
INDEX NAME DESCRIPTION STARS OFFICIAL AUTOMATED
triumf.ca pps04.lcg.triumf.ca:5000/library/sl6-first 0
triumf.ca pps04.lcg.triumf.ca:5000/library/sl6-new 0
triumf.ca pps04.lcg.triumf.ca:5000/library/sl6-umd3 0
triumf.ca pps04.lcg.triumf.ca:5000/library/sl6-umd3cond 0
triumf.ca pps04.lcg.triumf.ca:5000/library/sl6-umd3condv2 0
triumf.ca pps04.lcg.triumf.ca:5000/library/sl6-umd3condv3 0
triumf.ca pps04.lcg.triumf.ca:5000/library/sl6-umd3condv4 0

Docker Implementation 13

 Docker Containers Version 1

9 Docker Containers

When you launch a Docker container, you need to pull an image if it is not yet local. The docker
command knows where to find images by virtue of the configuration as outlined in section 4 above.
The image will be pulled automatically – here is an example:

docker run -d -it --cap-add SYS_ADMIN -v /home:/home \
 /etc/grid-security:/etc/grid-security -v /cvmfs:/cvmfs \
 /opt/glite:/opt/glite -v /etc/localtime:/etc/localtime \
 -p 4080:4080 sl6-umd3condv4 /root/init

Unable to find image 'sl6-umd3condv4:latest' locally
Trying to pull repository pps04.lcg.triumf.ca:5000/sl6-umd3condv4 ...
Pulling repository pps04.lcg.triumf.ca:5000/sl6-umd3condv4

762758303a84: Extracting [===========>] 72.42 MB/312.8 MB
. . .
Status: Downloaded newer image for pps04.lcg.triumf.ca:5000/sl6-umd3condv4:latest
pps04.lcg.triumf.ca:5000/sl6-umd3condv4: this image was pulled from a legacy
registry. Important: This registry version will not be supported in future versions
of docker.

Note the warning message above, concerning the registry version. Our future work on Docker im-
age registries needs to focus on Docker Distribution instead because of this issue. Indeed, at Ansi-
ble version 1.9 any Ansible docker command failed with this warning. At least at Ansible 1.10 a
better supported 'docker_container' command succeeds and issues the warning.

9.1 Running Docker containers

9.1.1 Bind mounts

A very useful feature of docker containers is the ability to bind-mount volumes. We make liberal
use of this in early docker worker node containers to preserve disk space and to reuse components.
The list of bind-mounts used in the test bed:

➢ /etc/grid-security

 let the Engine host manage CRLs

➢ /etc/localtime

 set the timezone in the container to match the Engine host

➢ /opt/glite

14 Configuration Management

Version 1 Docker Containers

 probably will not be needed, but this directory on the Engine host contains yaim configu-
ration settings that we could access if needed

➢ /cvmfs

 we want to avoid nfs mounts in the container. Instead we install cvmfs on the Engine
host, and bind-mount it on the container.

 note that I did configure the Engine host to never unmount the cvmfs trees – we need to
test to see if this is really necessary:

[root@wn024 ~]# tail -1 /etc/auto.master
/cvmfs /etc/auto.cvmfs --timeout 0

➢ /home

 this is the traditional scratch space for user jobs in the Tier-1. Therefore the Engine host
had a large home directory with user and group ID numbers that must match the uid/gid
setup on the docker container.

 The Engine host can be responsible for cleanup of scratch space and home directories via
its own cron jobs. At the Tier-1, the disk-checking cron jobs would also continue to run
from the Engine host – however, assuming a condor configuration the way of stopping
the container's condor_master in case of imminent disk failure would need to be revis-
ited.

9.1.2 Port Mappings

To simplify the configuration we start condor using the shared-port option:

diff condor_config.local condor_config.local.t1-ppsce
150,154d149
<
< ## Tier-1 docker test settings
< DISCARD_SESSION_KEYRING_ON_STARTUP = False
< USE_SHARED_PORT = True
< SHARED_PORT_ARGS = -p 4080

We can then map the internal port to any unused port on the Engine host with the command-line
option '-p'; e.g.
 -p 4080:4080

or

 -p 4088:4080

Docker Implementation 15

 Docker Containers Version 1

9.1.3 Hostnames and IP addresses

Docker networking is not like virtualization networking – unless you create user-defined sub-
nets then you cannot control the IP address of containers at launch – Docker Engine will sequen-
tially assign IP addresses from its IP base. However to set the local hostname of a container to
the DNS-assigned hostname one can use the trick of looking up the hostname from its IP address
in the launch script and assigning it. However, the SYS_ADMIN capability is needed to allow
the container to change its own hostname. This is less secure – we need to look more carefully
at this issue – see the link in the footnote1.

cat /root/init
#!/usr/bin/dumb-init /bin/bash
get the ip address and hostname - set the hostname before starting condor
thisip=$(ip -4 route get 1 | awk '{print $NF;exit}')
if ["$thisip" != ""] ; then
 thishost=$(host $thisip) 2>/dev/null
 if ["$thishost" != ""] ; then
 h=$(echo "${thishost##* }")
 h=$(echo "${h%?}")
 hostname $h
 fi
fi
set up condor environment before running condor_master in the foreground
. /etc/sysconfig/condor
/usr/sbin/condor_master -f

9.2 Docker and Ansible

The command-line is a bit unwieldy when launching containers. This is a use-case for tools like
Ansible. We have an example docker role named 'docker-worker' which sets up a docker environ-
ment on an SL7 worker node. Then we can use an Ansible playbook to launch containers; here is
the current example:

ansible-playbook docker/condor-container.yml \
 -e "target='wn024' thisname=vn0317 external_port=4081 image=sl6-umd3condv4"

cat playbooks/docker/condor-container.yml

Usage:
ansible-playbook THIS_FILE -e "image='sl6' name='somename'"
the internal and external port assignments can be given default values or
can be overridden. We should make the command into a variable as well.

- name: Launch docker worker condor-based containers

1 https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities

16 Configuration Management

https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities

Version 1 Docker Containers

 hosts: "{{ target }}"
 gather_facts: false
 user: root

 tasks:
 - name: Only run if this is a docker server
 fail: msg="This is not a docker server"
 when: not is_docker_server

 - name: Launch a test condor-enabled htcondor container
 docker_container:
 name: "{{ thisname }}"
 image: "{{ image }}"
 exposed_ports: "{{ port }}"
 published_ports: "{{ external_port }}:{{ port }}"
 command: "/root/init"
 capabilities: SYS_ADMIN
 volumes:
 - /etc/grid-security
 - /etc/localtime
 - /cvmfs
 - /home
 - /opt/glite

10 Next Steps

So far we have only used containers to run OPS jobs in a condor environment in the pre-production
setup at the Tier-1. Aside from getting experience with running containers for ATLAS jobs, we also
need look at container trust issues, maintenance and logging.

10.1 Distribution host

10.2 Logging

We will want to capture logs from containers in a production environment. There are a number of
logging options1 that need to be investigated. Another option is to create container-named sub-di-
rectories in /var/log/ on the Engine host and bind-mount those volumes to the container – for exam-
ple – capturing the container's internal logs from /var/log/condor under a sub-directory on the
Docker Engine host at /var/log/SOME_NAME_timestamp/ or elsewhere as needed. This is easily
done with Ansible at container launch time.

1 https://docs.docker.com/engine/admin/logging/overview/

Docker Implementation 17

https://docs.docker.com/engine/admin/logging/overview/

 Next Steps Version 1

10.3 Image Maintenance and Tracking

We will need a plan on how images are maintained and tracked:

• When and where do we patch the images? Should they be patched at the registry hub, or
would you update them inside the container before launching the application?

• How will we track changes? Should images, or just their scripts, and/or their signature
hashes be tracked in a version control system?

• What monitoring tools do we need?

11 Vocabulary

There are a number of technologies associated with Docker that are not mentioned in this document.
In version 2 of this document I will provide a short reference of terms you may come across in your
research, with a short definition of each.

12 Appendix

12.1 Docker Registry YAML initial configuration

All other flavors inherit the `common' config snippet
common: &common
 issue: '"docker-registry server"'
 # Default log level is info
 loglevel: _env:LOGLEVEL:info
 # Enable debugging (additional informations in the output of the _ping endpoint)
 debug: _env:DEBUG:false
 # By default, the registry acts standalone (eg: doesn't query the index)
 standalone: _env:STANDALONE:true
 # The default endpoint to use (if NOT standalone) is index.docker.io
 #index_endpoint: _env:INDEX_ENDPOINT:https://index.docker.io
 # Storage redirect is disabled
 storage_redirect: _env:STORAGE_REDIRECT
 # Token auth is enabled (if NOT standalone)
 disable_token_auth: _env:DISABLE_TOKEN_AUTH
 # No priv key
 privileged_key: _env:PRIVILEGED_KEY
 # No search backend
 search_backend: _env:SEARCH_BACKEND:sqlalchemy
 # SQLite search backend
 sqlalchemy_index_database: _env:SQLALCHEMY_INDEX_DATABASE:sqlite:////data/docker/index/docker-registry.db

 # # Mirroring is not enabled
 # mirroring:
 # source: _env:MIRROR_SOURCE # https://registry-1.docker.io
 # source_index: _env:MIRROR_SOURCE_INDEX # https://index.docker.io
 # tags_cache_ttl: _env:MIRROR_TAGS_CACHE_TTL:172800 # seconds

 cache:
 host: _env:CACHE_REDIS_HOST
 port: _env:CACHE_REDIS_PORT
 db: _env:CACHE_REDIS_DB:0
 password: _env:CACHE_REDIS_PASSWORD

18 Configuration Management

Version 1 Appendix

 # Enabling LRU cache for small files
 # This speeds up read/write on small files
 # when using a remote storage backend (like S3).
 cache_lru:
 host: _env:CACHE_LRU_REDIS_HOST
 port: _env:CACHE_LRU_REDIS_PORT
 db: _env:CACHE_LRU_REDIS_DB:0
 password: _env:CACHE_LRU_REDIS_PASSWORD

 # # Enabling these options makes the Registry send an email on each code Exception
 # email_exceptions:
 # smtp_host: _env:SMTP_HOST
 # smtp_port: _env:SMTP_PORT:25
 # smtp_login: _env:SMTP_LOGIN
 # smtp_password: _env:SMTP_PASSWORD
 # smtp_secure: _env:SMTP_SECURE:false
 # from_addr: _env:SMTP_FROM_ADDR:docker-registry@localdomain.local
 # to_addr: _env:SMTP_TO_ADDR:noise+dockerregistry@localdomain.local

 # Enable bugsnag (set the API key)
 bugsnag: _env:BUGSNAG

local: &local
 <<: *common
 storage: local
 storage_path: _env:STORAGE_PATH:/data/docker/registry

This is the default configuration when no flavor is specified
dev: &dev
 <<: *local
 loglevel: _env:LOGLEVEL:debug
 debug: _env:DEBUG:true
 search_backend: _env:SEARCH_BACKEND:sqlalchemy

To specify another flavor, set the environment variable SETTINGS_FLAVOR
$ export SETTINGS_FLAVOR=prod
#prod:
<<: *s3
storage_path: _env:STORAGE_PATH:/prod

Docker Implementation 19

