
Docker ImplementationDocker Implementation
Version 3Version 3

TRIUMF ATLAS Tier-1TRIUMF ATLAS Tier-1

by

Denice Deatrich

Last update:

2017-10-27

Version 1

Index

1 Introduction...3
2 Getting Docker..3
3 Pre-install Checklist...4

3.1 Storage preparation...4
3.2 Network setup...4

4 Engine Installation...5
4.1 Docker Engine installation and configuration..5

4.1.1 /etc/sysconfig/docker-network...5
4.1.2 /etc/sysconfig/docker-storage-setup...6
4.1.3 /etc/sysconfig/docker...6

4.1.3.1 External Images...7
5 Docker Registry installation and configuration...7

5.1 Trust issues..8
5.2 Secure Transport..8

5.2.1 Configuring docker client access...8
5.2.1.1 - Adding a configuration to /etc/docker/..8
5.2.1.2 - Modifying the PKI ca-trust..9

5.3 Storage...9
5.4 Installation...9

5.4.1 /etc/docker-distribution/registry/config.yml...10
5.4.2 Generate the file: htpasswd..10

5.5 Starting the registry...11
5.6 Querying the registry...11

6 Image signing...13
6.1 Using atomic..13

6.1.1 GPG key pair for signing...13
6.1.2 User account for signing..14
6.1.3 Configuration files on the server..14

6.1.3.1 /etc/atomic.conf..14
6.1.3.2 /etc/containers/registries.d/default.yaml...15

6.1.4 Configuration files on the client...15
6.1.4.1 /etc/containers/policy.json..15
6.1.4.2 /etc/containers/registries.d/Your_Server_Name.yaml..16

6.2 Using notary..16
7 Image building...16

7.1A full image from a shell script...16
7.1.1 Yum stanzas...17
7.1.2 Final image setup...18

7.2 Image layers built from Kickstart and dockerfiles...18
7.2.1 Kickstart-ed image...18
7.2.2 Base image with annotation...19
7.2.3 Middleware image with annotation..20
7.2.4 TRIUMF-specific htcondor image with annotation...21

Docker Implementation 1

Version 1

8 Docker Containers...22
8.1 Running Docker containers...23

8.1.1 Bind mounts...23
8.1.2 Port Mappings..24
8.1.3 Hostnames and IP addresses..24

8.2 Docker and Ansible..25
9 Next Steps...27

9.1 Logging..27
9.2 Image Maintenance and Tracking..27

10 Glossary...28
10.1 Orchestrators...28

11 Appendix..29
11.1 Configure systemd for auto cvmfs mounts..29

2 Configuration Management

Version 1 Introduction

1 Introduction

 The time has come to investigate using Docker, a Containers-based technology, for worker node
deployment. Worker nodes, because of their uniformity in configuration and requirements, are
good candidates for Containers. With KVM virtualization for example, there is much more over-
head in process, memory and disk space running KVM guests for each worker. With Containers a
much more light-weight environment is needed to sustain a worker implementation – system-wide
changes are shared – only the application is sand-boxed.

This document summarizes the initial setup and experience using Docker for a worker node infra-
structure. As always at the Tier-1 we like to initially investigate new technologies assuming a
'scratch' implementation, where we start from the basics to better understand it. Thus, though I
show how to access external Docker images, I focus instead on building and deploying our own.

Because we now use Ansible to manage server configurations this document will explain deploy-
ment by showing both the commands and configurations needed, as well as some associated Ansi-
ble role-based task snippets.

The Docker infrastructure documented here includes installation, configuration and run-time exam-
ples for:

• Docker Engine – the software running on the host that sponsors containers

• Docker Registry/Distribution – software that provides storage, searching and retrieval of
docker images

• Image building – how to build you own container images

• Docker Containers – run-time considerations

2 Getting Docker

The Red Hat implementation of Docker is not deployed in the mainstream installation base. Instead
it is made available by Red Hat in their 'extras' channel – this description is on their web site1:

Red Hat is introducing a new channel in the Red Hat Customer Portal for Red Hat
Enterprise Linux called “Extras.” The Extras channel is intended to give customers access
to select, rapidly evolving technologies. These technologies may be updated more
frequently than they would otherwise be in a Red Hat Enterprise Linux minor release. The
technologies delivered in the Extras channel are fully supported.

Over time, these technologies will continue to mature and stabilize and may eventually be
added to the Red Hat Enterprise Linux channel to which the Red Hat Enterprise Linux life-
cycle policies apply.

1 https://access.redhat.com/support/policy/updates/extras

Docker Implementation 3

https://access.redhat.com/support/policy/updates/extras

 Getting Docker Version 1

Note that this does not guarantee that the RHEL implementation of Docker will always be there. At
this point in time, Docker for RHEL 7 is re-built and published by both CentOS and Scientific
Linux (SL). As the CentOS versions were more recent at the time of initial testing they have been
mirrored by us, and the software can be installed at the Tier-1 using our t1-release-rh-extras RPM.

This document is based on our experience running Docker on SL; however as usual it applies
equally to a CentOS experience.

Docker Engine RPMs for SL and CentOS 6 can be found in EPEL, however they are much older
versions, and have no supported path forward1. However Docker on SL7 systems can run both SL6
and SL7 application containers. You give up some disk space in running SL6 containers on an
SL7 engine because you necessarily need to install SL6-based supporting libraries for any SL6 con-
tainer.

3 Pre-install Checklist

3.1 Storage preparation

The default behaviour of the Red Hat RPMs is to use loopback devices if you have made no provi-
sion for storage for your containers. Loopback devices should not be used in production; you will
get a warning when you use them:

Usage of loopback devices is strongly discouraged for production use. Either use `--stor-
age-opt dm.thinpooldev` or use `--storage-opt dm.no_warn_on_loop_devices=true` to
suppress this warning.

Moreover, the server should be configured with the necessary spare disk space, either as complete
LUNs or devices, or as complete volume groups. In this document I use a spare volume group
named vg1 for our thin-provisioned storage for the running containers.

Another issue is local docker image storage. Each worker docker engine may have a number of
pulled local images for testing and validation. Rather than storing these in the default location,
/var/lib/docker, I decide to locate them in a specific directory not used by the OS, with adequate
space. It is mounted as /docker

3.2 Network setup

I did not want to use the default bridging setup on 172.17.0.0/16 provided by the docker RPMs –
this is an issue to revisit later. In initial testing that private IP space is reported to the condor server
remotely, where that space is not route-able. Instead I decided to bridge to our existing private net-
work on 10.0.0.0/16, or 10.1.0.0/16 which are accessible to grid servers in the data centre. To that

1 https://access.redhat.com/solutions/1378023

4 Configuration Management

https://access.redhat.com/solutions/1378023

Version 1 Pre-install Checklist

end I configure the bridge on the Docker engine node ahead of time using an Ansible role. In this
document the name of the bridge is br0.

In our data centre each blade chassis housing worker nodes has a local /24 sub-net range in our pri-
vate 10.0.0.0/16 space – e.g. 10.0.3.0/24. At this early phase of testing I further restrict the IP range
for running containers to a fixed CIDR-range in a unique /30 group for each host within the blade
chassis /24 group. One of the advantages of this setup is that running containers have a well-known
IP address and hostname. As you will see, the container sets it hostname accordingly, and Ansible
renames the container to match that hostname.

10.0.0.0/16 10.0.3.0/24→

 10.0.3.1 (Engine 1 of 14)→

 10.0.1.128/30 containers:10.0.3.128, 10.0.3.129→ →

 10.0.3.2 (Engine 2 of 14)→

 10.0.1.132/30 containers: 10.0.3.132, 10.0.3.133→ →

 ...→

4 Engine Installation

4.1 Docker Engine installation and configuration

For the Tier-1 I install the local release rpm on the Docker Engine worker node host for the Red Hat
Extras repository, and then install the docker packages. On SL7, your yum configuration must also
enable SL 'fastbugs'. In case you normally do not enable it, then it must also be enabled:

yum install t1-release-rh-extras
yum –enablerepo=rh-extras,sl-fastbugs install docker atomic python-docker-py

A few configuration files need to be modified before you enable and start docker in daemon mode.

These files need to be modified to address issues specific to our data centre. The configuration file
differences are enumerated below; an Ansible Docker Engine role was used to configure the host:

4.1.1 /etc/sysconfig/docker-network

this is just an example for this test blade
diff docker-network docker-network.original
2,3c2
< DOCKER_NETWORK_OPTIONS="--ipv6=false --mtu=9000 –bridge=br0 --fixed-
cidr=10.0.3.144/28"
<

Docker Implementation 5

 Engine Installation Version 1

> DOCKER_NETWORK_OPTIONS=

• I want a customized network bridge setup

• IPv6 is disabled at this time

• You need to explicitly give the MTU if it is not the default 1500

4.1.2 /etc/sysconfig/docker-storage-setup

diff docker-storage-setup docker-storage-setup.original
5,7d4
<
< VG='vg1'
<

• I use the free volume group here which was provisioned during kickstart

4.1.3 /etc/sysconfig/docker

diff docker docker.original
4c4
< OPTIONS='--selinux-enabled=false -g /docker'

> OPTIONS='--selinux-enabled'
13d12
< ADD_REGISTRY='--add-registry docker-registry.lcg.triumf.ca'
19c18
< BLOCK_REGISTRY='--block-registry docker.io'

> # BLOCK_REGISTRY='--block-registry'
34c32
< DOCKER_TMPDIR=/var/tmp

> # DOCKER_TMPDIR=/var/tmp
44,47d41

• during initial testing I turn SELinux off

• I move the root of the docker daemon run-time to /docker ; as already mentioned the
default otherwise is /var/lib/docker. We need some space to grow while we under-
stand how many images we need to keep locally on the node.

• I block access to images at docker.io1. Instead we will use a local, private registry
running on host docker-registry.lcg.triumf.ca which is firewall ed off from the
world at this time. By default Docker registries run on port 5000, but can obviously
run on any unprivileged port. We will secure the registry host on port 443. If we
did not, and used an insecure port then it would need to be explicitly labelled inse-
cure in the configuration before a Docker engine can successfully interact with it.

1 https://docs.docker.com/docker-hub/repos/

6 Configuration Management

https://docs.docker.com/docker-hub/repos/

Version 1 Engine Installation

• I switch to using /var/tmp for temporary files; the default temporary file location
would otherwise be /var/lib/docker/tmp/

Once these files are changed one can enable and start docker:

systemctl enable docker
systemctl start docker

Further configuration is needed if you will only accept digitally-signed images. That part is cov-
ered in the image signing chapter.

4.1.3.1 External Images

For the Tier-1 data centre, our light-path nodes cannot get to the commercial network – docker.io or
redhat.com - without a proxy. This is possible in the /etc/sysconfig/docker with a setting like:

https_proxy=somehost.lcg.triumf.ca:3136

However, this is a global docker setting, meaning that the same proxy would also be used to get to
any local private registries, which may not be desired.

5 Docker Registry installation and
configuration

There are two branches of software that provide a Docker Registry:

1. The legacy registry (v1) which you get when you install the docker-registry RPM

2. The next generation (v2) registry provided by the docker-distribution RPM

It is time to move on to Docker Distribution – v1 is deprecated, and is ugly to configure. Note how-
ever that Docker Distribution is still missing a functional search interface1; this is tracked in this
Github issue URL:

 https://github.com/docker/distribution/issues/206

In the previous version of this document2 skeletal instructions on setting up a Docker Registry were
added. Here we move on to the v2 configuration. Though the phrase 'registry' is often used in this
document we are now referring to the v2 registry.

I use host docker-registry.lcg.triumf.ca for an initial local test v2 registry. The registry daemon is
configured to run on the secure port, 443 rather than the default port, 5000. Only data centre nodes
are allowed to access this port at this time, but when it is moved to a permanent host and home it
could be opened up.

1 https://bugzilla.redhat.com/show_bug.cgi?id=1277572
2 https://twiki.atlas-canada.ca/pub/AtlasCanada/TRIUMFDocker/Tier1Docker-v2.pdf

Docker Implementation 7

https://twiki.atlas-canada.ca/pub/AtlasCanada/TRIUMFDocker/Tier1Docker-v2.pdf
https://github.com/docker/distribution/issues/206
https://bugzilla.redhat.com/show_bug.cgi?id=1277572

 Docker Registry installation and configuration Version 1

5.1 Trust issues

The goal with running a private and/or local registry is to consider some trust issues like securely
signing images, as well as securely transporting images. Signing images is a work in progress –
there are two technologies for image signing – Project Atomic and Docker Notary. We use
'atomic' for image signing, and our implementation is documented in the next chapter.

Here are a some useful links to read concerning container security:

• https://blog.docker.com/2013/11/introducing-trusted-builds/

• https://access.redhat.com/blogs/766093/posts/1976473

• https://titanous.com/posts/docker-insecurity

• https://thenewstack.io/assessing-the-state-current-container-security/

• http://rhelblog.redhat.com/2015/09/03/what-is-deep-container-inspection-dci-and-why-is-it-important/

5.2 Secure Transport

While you can install an insecure (http-type) registry, you will be limited with authorization op-
tions in such a setting. Instead we will enable a TLS https-type registry using a host x509 certifi-
cate signed by the national grid certificate authority, in our case Grid Canada1. With grid CRLs
in place via the fetch-crl RPM, and the host certificate and key in place as /etc/grid-
security/hostcert.pem and /etc/grid-security/hostkey.pem we can use this configuration in the
config.yml file below to secure our registry.

5.2.1 Configuring docker client access

There is a client-side issue that we must take care of for any host that accesses the registry when
using non-commercial x509 certificates – make sure that the CA certificate is known to the host.

There are two ways of doing this. I describe both, but favour the second option for its simplicity
and universality.

5.2.1.1 - Adding a configuration to /etc/docker/

One way of doing it is to put the certificate in the /etc/docker tree. If you are missing it, then you
may see this message:

x509: certificate signed by unknown authority. If this private registry
supports only HTTP or HTTPS with an unknown CA certificate, please add
`--insecure-registry docker-registry.lcg.triumf.ca:5000` to the daemon's
arguments. In the case of HTTPS, if you have access to the registry's CA
certificate, no need for the flag; simply place the CA certificate at

1 https://cert.gridcanada.ca/pki/pub

8 Configuration Management

https://cert.gridcanada.ca/pki/pub
http://rhelblog.redhat.com/2015/09/03/what-is-deep-container-inspection-dci-and-why-is-it-important/
https://thenewstack.io/assessing-the-state-current-container-security/
https://titanous.com/posts/docker-insecurity
https://access.redhat.com/blogs/766093/posts/1976473
https://blog.docker.com/2013/11/introducing-trusted-builds/

Version 1 Docker Registry installation and configuration

/etc/docker/certs.d/docker-registry.lcg.triumf.ca/ca.crt

Thus we could create the directory corresponding to the fully-qualified host name and port, and
copy the CA certificate into place:

 # cd /etc/docker/certs.d/
 # mkdir docker-registry.lcg.triumf.ca:443
 # cd docker-registry.lcg.triumf.ca:443
 # cp -p /etc/grid-security/certificates/GridCanada.pem ca.crt

5.2.1.2 - Modifying the PKI ca-trust

This option is not docker-specific, and is also easier:
 # cp -p /etc/grid-security/certificates/GridCanada.pem /etc/pki/ca-trust/source/anchors/
 # /usr/bin/update-ca-trust

5.3 Storage

Before installing the software a file system is created with enough grow-able space for the initial
registry environment. The mount point is named /data/docker/ and it will house the non-registry
container images as well as a scratch area for playing with images.

An active registry using local disk storage may be an impediment, especially if hundreds of
workers pull images from it. The registry software supports many storage types, mostly 'cloud'
types with special high-availability and distributed fast-access storage configurations such as
azure, gcs, s3, swift and oss. However for our tests we use the 'filesystem' storage type. I make
use of a couple of large hardware-raid-based partitions and create a stripe zero mirror of them
with LVM, yielding a fairly performant yet reliable local file-system implementation. This area
is mounted under /data/registry/ where the registry images will reside.

5.4 Installation

Install the RPM:

yum –enablerepo=rh-extras,sl-fastbugs install \
 docker-distribution,atomic,docker-common,docker

Though docker is not needed for a local registry I install it to be able to import or create, sign
and push images on the same node in this test environment. Clearly it will be better in the future
to create new images in another docker environment, and upload the images to the docker-reg-
istry.

Docker Implementation 9

 Docker Registry installation and configuration Version 1

Before enabling and starting the daemon I modify the main registry configuration file, con-
fig.yml, to suit our environment.

5.4.1 /etc/docker-distribution/registry/config.yml

Here is our configuration. The 'rootdirectory' points into the LVM raid-0 mirror. The logging
level is set to info with text-mode formatting, but can be toggled to debug, and our certificate
paths are added under the 'tls' area.

For now we comment out the basic-realm http-style authentication with user and path to the
password file; we can enable it in the future if we decide to require authentication to the registry.

to avoid ipv6 here we use the ipv4 address as the http URL
version: 0.1
log:
level: debug
 level: info
formatter: logstash
 formatter: text
 accesslog:
 disabled: false
fields:
service: registry
storage:
 delete:
 enabled: true
 cache:
 layerinfo: inmemory
 filesystem:
 rootdirectory: /data/registry
 maxthreads: 100
http:
 addr: 206.12.1.176:443
 tls:
 certificate: /etc/grid-security/hostcert.pem
 key: /etc/grid-security/hostkey.pem
#auth:
htpasswd:
realm: basic-realm
path: /etc/docker-distribution/registry/registry_passwd

5.4.2 Generate the file: htpasswd

In case you want to require a user name and password to access the site then to use basic authen-
tication you must generate a password hash file. There is a useful recipe on using htpasswd in a
registry on the IBM web site1. To use the '-B' option to htpasswd at least a RHEL-7 based ver-
sion of httpd-tools is needed:

1 https://www.ibm.com/developerworks/library/l-docker-private-reg/

10 Configuration Management

https://www.ibm.com/developerworks/library/l-docker-private-reg/

Version 1 Docker Registry installation and configuration

cd /etc/docker-distribution/registry
htpasswd -Bc ./registry_passwd t1user
New password:
Re-type new password:
Adding password for user t1user
chmod 400 registry_passwd

If 'auth' is enabled in the registry's config.yml file, then we can test it from a remote Docker
client:

docker login https://docker-registry.lcg.triumf.ca
Username: t1user
Password:
Email:
WARNING: login credentials saved in /root/.docker/config.json
Login Succeeded
and we can see in the above output what file we would need to replicate
on clients if we used authentication on docker worker nodes
cd /root/.docker/
ls -la
total 12
drwx------ 2 root root 4096 Mar 24 18:13 .
dr-xr-x---. 7 root root 4096 Mar 24 18:13 ..
-rw------- 1 root root 116 Mar 24 18:13 config.json
cat config.json
{
 "auths": {
 "https://docker-registry.lcg.triumf.ca": {
 "auth": "__obfuscated__",
 "email": ""
 }
 }
}

5.5 Starting the registry

Now the Docker Distribution registry can be enabled and started:

systemctl enable docker-distribution
systemctl start docker-distribution

5.6 Querying the registry

As already mentioned, a search implementation is not yet done for Docker Registry V2. There
are a few primitive curl commands that provide some useful information.

Docker Implementation 11

 Docker Registry installation and configuration Version 1

get a list of images from this server
$ curl https://docker-registry.lcg.triumf.ca/v2/_catalog
{"repositories":["sl6-base","sl6.9_base","sl6.9_umd3","sl6.9_umd3_condor"]}

get the list of images into a shell variable
$ images=$(curl -s https://docker-registry.lcg.triumf.ca/v2/_catalog| \
 cut -d: -f 2|sed -r -e 's%[]["}]+%%g' -e 's%,% %g')

$ echo $images
sl6-base sl6.9_base sl6.9_umd3 sl6.9_umd3_condor

get any tags associated with each image (always 'latest' if it was not
otherwise specified during tagging)
$ for i in $images ; do
 curl -X GET https://docker-registry.lcg.triumf.ca/v2/$i/tags/list
done
{"name":"sl6-base","tags":["latest"]}
{"name":"sl6.9_base","tags":["latest"]}
{"name":"sl6.9_umd3","tags":["latest"]}
{"name":"sl6.9_umd3_condor","tags":["latest"]}

a lot of information is in the manifest for each image
$ for i in $images ; do
 echo $i
 curl -s -H "Accept:*" \
 https://docker-registry.lcg.triumf.ca/v2/$i/manifests/latest
 echo "”
done
...
sl6.9_base
{
 "schemaVersion": 1,
 "name": "sl6.9_base",
 "tag": "latest",
 "architecture": "amd64",
 "fsLayers": [
 {
 "blobSum": "sha256:a3e..."
 },
 ...
],
 "history": [
 {
 "v1Compatibility": "{\"architecture\":\"amd64\",\"author\"...}"
 },
 {
 ...
 },
],
 "signatures": [
 {
 "header": {
 "jwk": {
 "crv": "P-256",
 "kid": "HDCN:...
 },
 "alg": "ES256"
 },
 "signature": "rh3...",
 "protected": "eyJm..."
 }
]
}

12 Configuration Management

Version 1 Image signing

6 Image signing

This is a work in progress. Earlier there was a blocking bug with a get_manifest with Red Hat's
atomic implementation that was recently fixed. In the image building chapter I show examples of
image signing.

6.1 Using atomic

Recent versions of atomic now allow image signing in private registries.

It is important to note that image signatures are installed separately in the registry tree, and are not
actually part of the image itself. This is different than signed RPMs for example, where the image
signature is embedded in the RPM package.

We create a user account which owns the signing key, and modify the configuration files which gov-
ern image signing in the following sections.

6.1.1 GPG key pair for signing

First you need a GPG key pair. This is well-documented already in the Red Hat guide1, but here
are some quick steps as a reminder:

yum install rng-tools
rngd -r /dev/urandom
now as a regular user
$ unset DISPLAY
$ GPG_TTY=$(tty) gpg2 --gen-key
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 4
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name: TRIUMF Tier-1

1 https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/

Docker Implementation 13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/

 Image signing Version 1

Email address: docker@lcg.triumf.ca
Comment: Image Signing Key
You selected this USER-ID:
 "TRIUMF Tier-1 (Image Signing Key) <docker@lcg.triumf.ca>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

 ┌───┐
 │ Please re-enter this passphrase │
 │ │
 │ Passphrase *************************_______________ │
 │ │
 │ <OK> <Cancel> │
 └───┘

We need to generate a lot of random bytes. It is
 …
gpg: /home/unpriv/.gnupg/trustdb.gpg: trustdb created
gpg: key 31628D81 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
pub 2048R/31628D81 2017-03-17
 Key fingerprint = 60B3 69DA F7D5 6B05 790F 6CF6 A87C C7F3 3162 8D81
uid TRIUMF Tier-1 (Image Signing Key) <docker@lcg.triumf.ca>

It is also important to export an ASCII version of the public key to be used by docker worker
node clients:

$ gpg2 --armor --export --output TRIUMF_Tier-1_PublicSig.gpg docker@lcg.triumf.ca

6.1.2 User account for signing

Create a user account and set the login shell to /sbin/nologin – we unimaginatively call the ac-
count docker. In our case we set the home to /var/docker, and mark this directory to be backed
up in our archival system. We copy the GPG private key (secring.gpg with mode 0400) and
public key (pubring.gpg) into ~docker/.gnupg/.

6.1.3 Configuration files on the server

6.1.3.1 /etc/atomic.conf

We add entries for default_signer, matching the email address declared in the signature, and
gnupg_homedir in this file.

14 Configuration Management

Version 1 Image signing

default_signer: docker@lcg.triumf.ca
gnupg_homedir: /var/docker/.gnupg

6.1.3.2 /etc/containers/registries.d/default.yaml

The fully qualified hostname of this registry server needs to be used in the path to the signature
store; the default path is /var/lib/atomic/sigstore. Thus:

default-docker:
sigstore: file:///var/lib/atomic/sigstore
 sigstore: file:///var/lib/atomic/docker-registry.lcg.triumf.ca

6.1.4 Configuration files on the client

On the client to enforce and manage a policy of only using digitally signed images there are two
files that need to be configured.

6.1.4.1 /etc/containers/policy.json

We set signing policy in this json file1. In our case we reject by default all images, and then se-
lectively accept signed content from our own registry server. (I need to review why one might
want to leave the docker-daemon transport with 'insecureAcceptAnything').
{
 "default": [
 {
 "type": "reject"
 }
],
 "transports": {
 "docker": {
 "docker-registry.lcg.triumf.ca": [
 {
 "keyType": "GPGKeys",
 "type": "signedBy",
 "keyPath": "/etc/pki/containers/TRIUMF_Tier-1_PublicSig.gpg"
 }
]
 },
 "docker-daemon": {
 "": [
 {
 "type": "insecureAcceptAnything"
 }
]
 }
 }
}

1 https://github.com/containers/image/blob/master/docs/policy.json.md

Docker Implementation 15

https://github.com/containers/image/blob/master/docs/policy.json.md

 Image signing Version 1

With this policy in place we cannot pull an unsigned image:
docker pull sl6-base
Using default tag: latest
Trying to pull repository docker-registry.lcg.triumf.ca/sl6-base ...
docker-registry.lcg.triumf.ca/sl6-base:latest isn't allowed: A signature was required, but no
signature exists

Note that the file lists the key path for the public key, that is:

 /etc/pki/containers/TRIUMF_Tier-1_PublicSig.gpg

This file needs to be on the clients – recall that it was created when the GPG key pair was cre-
ated.

6.1.4.2 /etc/containers/registries.d/Your_Server_Name.yaml

For each registry using signed images, we need to configure the URL for this server on each
client which looks for signatures:
cat /etc/containers/registries.d/docker-registry.lcg.triumf.ca.yaml

docker:
 docker-registry.lcg.triumf.ca:
 sigstore: http://docker-registry.lcg.triumf.ca/signatures/

6.2 Using notary

This is yet to be tested. In the case of Docker 'notary', there is the annoying issue of the lack of
RPM packaging for these Docker tools. I am easily able to build notary client and server from
source, so I can generate RPMs myself. If Docker Compose is really needed then I need to figure
out how to generate RPMs for them.

7 Image building

7.1 A full image from a shell script

This was the initial method we used to create images – this is now deprecated, but we leave it here
as a reference.

I used another test node already installed with SL6 to build some SL images for containers. A test
build system should be considered expendable, since mistakes in building test images might over-
write files or render it inoperable – do not use an important production system for this purpose!

16 Configuration Management

Version 1 Image building

The Docker 'contrib' area on Github has a number of example scripts that can be used to build im-
ages, depending on your underlying build tools. I modified the 'mkimage-yum.sh1' script. Our
modified script is available at the URL2 in the footnote. It essentially creates an image in a few
yum stanzas into a target directory using yum. A few of the options for yum are important, as they
allow us to install into an alternate root, selecting only mandatory packages without accompanying
documentation; they are:

• —releasever

• —installroot

• --setopt=tsflags=nodocs

• --setopt=group_package_types=mandatory

 The script writes into a target directory, which is tarred and gzipped at the end. It is this tarball
which is copied to a working directory on the registry node, where it is later imported into the reg-
istry.

The script first sets up the bare minimum number of device files in the target area. Note that the
Tier-1 release RPMs use a yum variable that determines if the mirror is accessed by NFS or by
HTTP. For a docker image we want to avoid NFS since it introduced complexity in the container
setup, so the variable gets set to an HTTP URL at the end of the script.

7.1.1 Yum stanzas

These are descriptions of the yum stanzas invoked in the script. By breaking it down we can in-
spect disk space used so far at each step.

 1. Because we wish to use the local mirror for our installation I first install the needed Tier-1
release RPMs in the first 'yum install' stanza. This of course drags in a minimal base sys-
tem.

 a) Size: 333 MB

 2. Then the script does a yum group-install of core and development.

 a) Size: 517 MB

 3. The next stanza installs a list of packages that we always install on workers in the Tier-1.
(This could be skipped I think, relying instead on the HEP_Oslibs_SL6 RPM to pull in de-
pendencies)

 a) Size: 1.1 GB

 4. Then we install the UMD-3 middleware.

 a) Size: 1.7 GB

1 https://github.com/docker/docker/blob/master/contrib/mkimage-yum.sh
2 http://grid.triumf.ca/share/

Docker Implementation 17

http://grid.triumf.ca/share/
https://github.com/docker/docker/blob/master/contrib/mkimage-yum.sh

 Image building Version 1

 5. Finally we install HEP_Oslibs_SL6 and condor

 a) Size: 1.8 GB

7.1.2 Final image setup

After the software is installed the script expunges any remaining space-gobbling features like
man pages, language files, icons, etc. and then the size falls to 1.5 GB.

At the end of the script we add local customization – the group and user configuration is ap-
pended to passwd, shadow, group, gshadow in the target etc directory; the Tier-1 profile is
added as well as the local condor configuration. A tarball is created, and the final size of this
file is 506 MB.

To create a truly portable image for use outside of the Tier-1, we could use release RPMs from
global open HTTP mirrors instead.

The final 'local' configuration could also be done on the container at launch time, or could be
applied to a separate layered image, so that the generic image would be untainted.

As part of the image creation we have installed a locally-built RPM named dumb-init. The
dumb-init1 application is useful in container environments because it allows better control over
launch-time commands. See ahead in the Container section on how it is used.

7.2 Image layers built from Kickstart and
dockerfiles

Currently we are building images in a manner similar to the way that Red Hat builds images, judg-
ing from their image collection at registry.access.redhat.com.

We start with a kickstart-ed image created using lorax2, and then use a sequence of dockerfiles to
create subsequent image layers. On the atlas-canada wiki I will provide the SL6 lorax RPMs,
docker files and kickstart file used to create these images.

7.2.1 Kickstart-ed image

We use lorax, software that provides livemedia-creator, a tool which uses Anaconda and Kick-
start to create images for use with virtualization. It uses a minimal kickstart file and emits a
compressed tar file that we can import into docker.

Red Hat provides this software as an RPM starting at RHEL7. In principle lorax on SL7 should
be able to build RHEL6 anaconda images, but I had trouble getting it to work – this is an issue to

1 https://github.com/Yelp/dumb-init
2 https://github.com/rhinstaller/lorax

18 Configuration Management

https://github.com/rhinstaller/lorax
https://github.com/Yelp/dumb-init

Version 1 Image building

revisit. This RPM is not available on RHEL6, so I created an RPM that works on my SL6-based
KVM servers. Only a few modifications were needed to the RPM.

The 'livemedia-creator' utility needs the path to the kickstart file and the path to the distribution
boot ISO image. If TMPDIR space is limited then you can tell it to use a different scratch area.

livemedia-creator --make-tar --iso=../scratch/sl-boot.iso –ks=sl6.ks \
 --image-name=sl6-base.tar.xz --tmp /data/scratch/ \
 --kernel-args="console=tty0 console=ttyS0,115200"
ls -lah
total 590M
drwxr-xr-x 2 root root 4.0K Aug 1 10:30 .
drwxr-xr-x 5 root root 4.0K Jul 31 09:16 ..
-rw-r--r-- 1 root root 82M Jul 31 18:40 centos6.tar.xz
-rw-r--r-- 1 root root 230M Mar 28 2017 cos-boot.iso
-rw-r--r-- 1 root root 988 Jul 31 15:47 livemedia.log
-rw-r--r-- 1 root root 0 Jul 31 15:47 program.log
-rw-r--r-- 1 root root 232M Apr 11 2017 sl-boot.iso
-rw-r--r-- 1 root root 47M Aug 1 10:30 sl6-base.tar.xz

We then import this image into the registry server:

docker import sl6-base.tar.xz sl6-base
sha256:bbf4d72da5d3e038eb3b861fcb96747071168bb6a8f677e4f1689e91f15aa8dd

We need to tag this image so that we can refer to it in our first dockerfile, and then push it into
the registry. The image size 202 MB.

docker tag sl6-base docker-registry.lcg.triumf.ca/sl6-base
docker -D push docker-registry.lcg.triumf.ca/sl6-base
…
ddb896626840: Pushed
latest: digest:
sha256:63e4cf57e7f1749f8d78f1fd0cb534a3411d1ea980bb92c4a77637a39a293237 size: 528

7.2.2 Base image with annotation

Now we build a new base image using our first dockerfile. The image size will not change, since
we are in effect only adding some meta-data -- annotations (labels) -- to the image.

docker build -t sl6.9_base -f Dockerfile.base .
Sending build context to Docker daemon 3.072 kB
Step 1 : FROM sl6-base
 ---> bbf4d72da5d3
Step 2 : MAINTAINER docker@lcg.triumf.ca
 ---> Running in c245bd23a9cd
 ---> c72d7d8c5adf
Removing intermediate container c245bd23a9cd
Step 3 : ENV container docker
 ---> Running in 86c80e8a1dcf
 ---> 0da9eb15ffaf

Docker Implementation 19

 Image building Version 1

Removing intermediate container 86c80e8a1dcf
Step 4 : ENV PATH /bin:/usr/bin:/sbin:/usr/sbin
 ---> Running in aa8a9fa27f25
 ---> 01aab0a8a428
Removing intermediate container aa8a9fa27f25
Step 5 : CMD /bin/bash
 ---> Running in 2e4df6919251
 ---> 70918bffea21
Removing intermediate container 2e4df6919251
Step 6 : LABEL ca.triumf.lcg.vendor "TRIUMF Tier-1" maintainer
"docker@lcg.triumf.ca" distribution "Scientific Linux 6" name "sl6" version "6.9"
release "01" description "SL 6 base image"
 ---> Running in 8d9604b30f2d
 ---> e2658b084461
Removing intermediate container 8d9604b30f2d
Successfully built e2658b084461

Again we tag this image and push it to the registry; we also sign this one because it is the first of
the images that we may want to use for other purposes.

docker tag sl6.9_base docker-registry.lcg.triumf.ca/sl6.9_base
docker push docker-registry.lcg.triumf.ca/sl6.9_base
atomic sign docker-registry.lcg.triumf.ca/sl6.9_base
Created: /var/lib/atomic/docker-
registry.lcg.triumf.ca/sl6.9_base@sha256=9eb88232100e32914e948c72311bdb90bb4526cf135c1d3833c76
c4fa14f0cdf/signature-1

7.2.3 Middleware image with annotation

Then we build a middleware image using our docker file, Dockerfile.umd3. The image is based
on the sl6.9_base image, and again we tag, push and sign the resulting image, which is 1.37 GB.

docker build -t sl6.9_umd3 -f Dockerfile.umd3 .
Sending build context to Docker daemon 33.79 kB
Step 1 : FROM sl6.9_base
 ---> e2658b084461
Step 2 : ENV PATH /bin:/usr/bin:/sbin:/usr/sbin
 ---> Running in 323d88e1fd57
 ---> 06d16cc2bd81
Removing intermediate container 323d88e1fd57
Step 3 : LABEL ca.triumf.lcg.vendor "TRIUMF Tier-1" maintainer
"docker@lcg.triumf.ca" distribution "Scientific Linux 6" name "sl6-umd3" version
"3" release "01" description "SL 6 image with Middleware for ATLAS"
 ---> Running in a107627a8f6a
 ---> e0f7e80352c7
…....
Removing intermediate container 270b7640ae4e
Successfully built c2bec29c131b
docker tag sl6.9_umd3 docker-registry.lcg.triumf.ca/sl6.9_umd3
docker -D push docker-registry.lcg.triumf.ca/sl6.9_umd3
atomic sign docker-registry.lcg.triumf.ca/sl6.9_umd3

20 Configuration Management

Version 1 Image building

There is some work to do on this docker file – for example, I forgot to run a yum cleanup to re-
lease some disk space. As well, experience shows that two packages are missing which are
needed in ATLAS environments – wget and unzip – and we could install them here, and also
take the opportunity to update any packages in the SL base image. A cleaned-up Docker-
file.umd3 might look like this:

Dockerfile containing EGI/UMD3 middleware
FROM sl6.9_base

ENV PATH /bin:/usr/bin:/sbin:/usr/sbin

LABEL ca.triumf.lcg.vendor="TRIUMF Tier-1" \
 maintainer="docker@lcg.triumf.ca" \
 distribution="Scientific Linux 6" \
 name="sl6-umd3" \
 version="3" \
 release="02" \
 description="SL 6 image with Middleware for ATLAS"

COPY releases/*.rpm /root/

each RUN command below should all be on one line
RUN yum --setopt=tsflags=nodocs --setopt=group_package_types=mandatory -y
localinstall /root/*.noarch.rpm && rm /root/*.rpm

RUN yum --disablerepo=EGI-trustanchors --setopt=tsflags=nodocs
--setopt=group_package_types=mandatory -y install emi-wn xrootd-client glexec-wn
yaim-glexec-wn HEP_OSlibs_SL6 wget unzip

RUN yum -y update && yum clean all

RUN rpm -e --nodeps dracut-kernel dracut grubby kernel-firmware kernel

CMD ["/bin/bash"]

7.2.4 TRIUMF-specific htcondor image with annotation

Finally we build the Tier-1 specific htcondor image, tag, push and sign it.

 docker build -t sl6.9_umd3_condor -f Dockerfile.condor .
Sending build context to Docker daemon 304.1 kB
Step 1 : FROM sl6.9_umd3
 ---> c2bec29c131b
Step 2 : ENV PATH /bin:/usr/bin:/sbin:/usr/sbin
 ---> Running in a521322fdf98
 ---> 974513072436
Removing intermediate container a521322fdf98
Step 3 : LABEL ca.triumf.lcg.vendor "TRIUMF Tier-1" maintainer
"docker@lcg.triumf.ca" distribution "Scientific Linux 6" name "sl6-umd3-condor"
version "1" release "01" description "SL 6 image with Middleware and htcondor for
TRIUMF Tier-1"
 ---> Running in 508c658e1921
…....
Removing intermediate container 155fdf60b185
Successfully built 87060e85969c

Docker Implementation 21

 Image building Version 1

docker tag sl6.9_umd3_condor docker-registry.lcg.triumf.ca/sl6.9_umd3_condor
docker -D push docker-registry.lcg.triumf.ca/sl6.9_umd3_condor
atomic sign docker-registry.lcg.triumf.ca/sl6.9_umd3_condor

This final image is 1.5 GB, and is composed of 10 layers. The history of the layers is best in-
spected on the host where the image was created. Presumably only those operations that contrib-
uted size to the image result in a layer, as you can see from this image's history:

docker inspect sl6.9_umd3_condor
...
"Type": "layers",
"Layers": [
"sha256:ddb896626840c2b28329368596e2db2a949cbbccb23369a5b60180fb74191550",
"sha256:4b06468ea88a80c8a3d123171263a9caed23e3b77592cab85655fcecfd0e853f",
"sha256:008a3aba4434f8548f81f713cf10d5ff642e19e93d4bc531a64f55fdc7c32d7b",
"sha256:bca0d3946213fd13378726623f81460577e82cec6e9a9a40e666d7bbaaeb0faa",
"sha256:e070d8b0898dc9d7de33edb88122468678910998ac1cb31bc81db82fe1c5472c",
"sha256:195bec4885ce7d6ab13db344b4e8ebb0750886376e85d000ba2f6b3f9b4a1027",
"sha256:259786139dfb069a79d1b8233b19c10f8f246d6a216f4ee74d8ec2f5d6d61450",
"sha256:f268c94fab6c70b90068d29f1bde2c536fff9d471b6fce4c702b29124e127ba4",
"sha256:cea7fde541a301c6734bfb7b291ce0886929d6bed52c32b37ad81c86f26e585b",
"sha256:b0ea83cfb5a576f1cfdbc1f7c808408a9f095746b5058fb722e092eb60add776"
]

docker history sl6.9_umd3_condor
IMAGE CREATED BY SIZE
e4113613018a /bin/sh -c #(nop) CMD ["/bin/bash"] 0 B
e2e4ae6ca277 /bin/sh -c yum --disablerepo=* --enablerepo= 80.59 MB
a984db7d7b77 /bin/sh -c echo "http://gridadm.triumf.ca/mir 32 B
b3798cdc226c /bin/sh -c groupadd -g 64 condor && useradd 152 kB
491c60fb0f99 /bin/sh -c yum --setopt=tsflags=nodocs --set 47.39 MB
bb6484da5bea /bin/sh -c #(nop) COPY multi:439ebcd9df18f261 297.8 kB
3def4c0626cd /bin/sh -c #(nop) LABEL ca.triumf.lcg.vendor 0 B
54ba2302f57b /bin/sh -c #(nop) ENV PATH=/bin:/usr/bin:/sb 0 B
c2bec29c131b /bin/sh -c #(nop) CMD ["/bin/bash"] 0 B
a3b54475445f /bin/sh -c rpm -e --nodeps dracut-kernel drac 45.06 MB
8ebf74e14de5 /bin/sh -c yum --enablerepo=UMD-3-base,UMD-3 1.062 GB
865876db73a4 /bin/sh -c yum --setopt=tsflags=nodocs --set 63.15 MB
3797695661c4 /bin/sh -c #(nop) COPY multi:0aa03c6c272f8d08 28.57 kB
e0f7e80352c7 /bin/sh -c #(nop) LABEL ca.triumf.lcg.vendor 0 B
06d16cc2bd81 /bin/sh -c #(nop) ENV PATH=/bin:/usr/bin:/sb 0 B
e2658b084461 /bin/sh -c #(nop) LABEL ca.triumf.lcg.vendor 0 B
70918bffea21 /bin/sh -c #(nop) CMD ["/bin/bash"] 0 B
01aab0a8a428 /bin/sh -c #(nop) ENV PATH=/bin:/usr/bin:/sb 0 B
0da9eb15ffaf /bin/sh -c #(nop) ENV container=docker 0 B
c72d7d8c5adf /bin/sh -c #(nop) MAINTAINER docker@lcg.triu 0 B
bbf4d72da5d3 202.2 MB

8 Docker Containers

When you launch a Docker container, you need to pull an image if it is not yet local. The docker
command knows where to find images by virtue of the configuration as previously shown. The im-
age will be pulled automatically – here is an example from an last year with an older test registry:

22 Configuration Management

Version 1 Docker Containers

docker run -d -it --cap-add SYS_ADMIN -v /home:/home \
 /etc/grid-security:/etc/grid-security -v /cvmfs:/cvmfs \
 /opt/glite:/opt/glite -p 4080:4080 sl6-umd3condv4 /root/init

Unable to find image 'sl6-umd3condv4:latest' locally
Trying to pull repository pps04.lcg.triumf.ca:5000/sl6-umd3condv4 ...
Pulling repository pps04.lcg.triumf.ca:5000/sl6-umd3condv4

762758303a84: Extracting [===========>] 72.42 MB/312.8 MB
. . .
Status: Downloaded newer image for pps04.lcg.triumf.ca:5000/sl6-umd3condv4:latest
pps04.lcg.triumf.ca:5000/sl6-umd3condv4: this image was pulled from a legacy
registry. Important: This registry version will not be supported in future versions
of docker.

Note the warning message above, concerning the registry version (V1). Indeed, at Ansible version
1.9 any Ansible docker command failed with this warning. At least at Ansible 1.10 a better sup-
ported 'docker_container' command succeeds and issues the warning.

8.1 Running Docker containers

8.1.1 Bind mounts

A very useful feature of docker containers is the ability to bind-mount volumes. We make liberal
use of this in early docker worker node containers to preserve disk space and to reuse components.
The list of bind-mounts used in the test bed:

➢ /etc/grid-security

 let the Engine host manage the CRLs

➢ /etc/localtime

 this no longer works, instead you must pass timezone information as an environment
variable in current docker implementations

➢ /opt/glite

 probably will not be needed, but this directory on the Engine host contains yaim configu-
ration settings that we could access if needed

➢ /cvmfs

 we want to avoid nfs mounts in the container. Instead we install cvmfs on the Engine
host, and bind-mount it on the container.

 note that we configure the Engine host to never unmount the cvmfs trees:

Docker Implementation 23

 Docker Containers Version 1

[root@wn024 ~]# tail -1 /etc/auto.master
/cvmfs /etc/auto.cvmfs --timeout 0

 To automatially trigger mounting of cvmfs mount points before a
container is started we use a systemd service; see the appendix for
details.

➢ /home

 this is the traditional scratch space for user jobs in the Tier-1. Therefore the Engine host
had a large home directory with user and group ID numbers that must match the uid/gid
setup on the docker container.

 The Engine host can be responsible for cleanup of scratch space and home directories via
its own cron jobs. At the Tier-1, the disk-checking cron jobs would also continue to run
from the Engine host – however, assuming a condor configuration the way of stopping
the container's condor_master in case of imminent disk failure would need to be revis-
ited.

8.1.2 Port Mappings

To simplify the configuration we start condor using the shared-port option:

diff condor_config.local condor_config.local.t1-ppsce
150,154d149
<
< ## Tier-1 docker test settings
< DISCARD_SESSION_KEYRING_ON_STARTUP = False
< USE_SHARED_PORT = True
< SHARED_PORT_ARGS = -p 4080

We can then map the internal port to any unused port on the Engine host with the command-line
option '-p'; e.g.
 -p 4080:4080

or

 -p 4088:4080

8.1.3 Hostnames and IP addresses

Docker networking is not like virtualization networking – unless you create user-defined sub-
nets then you cannot control the IP address of containers at launch – Docker Engine will sequen-
tially assign IP addresses from its IP base. However to set the local hostname of a container to
the DNS-assigned hostname one can use the trick of looking up the hostname from its IP address
in the launch script and assigning it. However, the SYS_ADMIN capability is needed to allow

24 Configuration Management

Version 1 Docker Containers

the container to change its own hostname. This is less secure – we need to look more carefully
at this issue – see the link in the footnote1.

cat /root/init
#!/usr/bin/dumb-init /bin/bash
get the ip address and hostname - set the hostname before starting condor
thisip=$(ip -4 route get 1 | awk '{print $NF;exit}')
if ["$thisip" != ""] ; then
 thishost=$(host $thisip) 2>/dev/null
 if ["$thishost" != ""] ; then
 h=$(echo "${thishost##* }")
 h=$(echo "${h%?}")
 hostname $h
 fi
fi

if [-x /home/docker/bin/docker-worker-container-setup.sh] ; then
 if [! -f /etc/condor/docker-worker-container-setup.done] ; then
 /home/docker/bin/docker-worker-container-setup.sh
 fi
fi

set up condor environment before running condor_master in the foreground
. /etc/sysconfig/condor
/usr/sbin/condor_master -f

8.2 Docker and Ansible

The command-line is a bit unwieldy when launching containers. This is a use-case for tools like
Ansible. We have an example docker role named 'docker-worker' which sets up a docker environ-
ment on an SL7 worker node. Then we can use an Ansible playbook to launch containers; here is
an example (note: we currently have an ansible bug with container exit on creation using
docker_container – to be understood, but will probably need a local update to Ansible version >=
2.3):

example command-line invocation without ansible
docker run -d -it --name vns0005.triumf.lcg --hostname vns0005.triumf.lcg \
 -v /home:/home -v /etc/grid-security:/etc/grid-security -v /cvmfs:/cvmfs \
 -v /opt/glite:/opt/glite -v /opt/Atlas:/opt/Atlas \
 --cap-add SYS_ADMIN -p 4080:4080 \
 -e "LANG=en_US.UTF-8" -e "TZ=America/Vancouver" \
 sl6.9_umd3_condor /root/init

example with ansible
ansible-playbook docker/condor-container.yml \
 -e "target='wn024' image=sl6.9_umd3_condor"

1 https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities

Docker Implementation 25

https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities

 Docker Containers Version 1

cat playbooks/docker/condor-container.yml

Usage:
ansible-playbook THIS_FILE -e "image='sl6' target='some_engine_host'"
the internal and external port assignments can be given default values or
can be overridden. We should make the command into a variable as well.

- name: Launch docker worker condor-based containers
 hosts: "{{ target }}"
 gather_facts: false
 user: root vars:
 - cmd: '/root/init'
 - port: 4080
 - external_port: "{{ port }}"
 - thisname: "{{ ansible_date_time.epoch }}"

 tasks:
 - name: Only run if this is a docker engine server
 fail: msg="This is not a docker engine"
 when: not is_docker_engine

 - name: Launch a condor-enabled htcondor container
 docker_container:
 name: "{{ thisname }}"
 image: "{{ image }}"
 exposed_ports: "{{ port }}"
 published_ports: "{{ external_port }}:{{ port }}"
 #command: "/root/init"
 entrypoint: "{{ cmd }}"
 capabilities: SYS_ADMIN
 env:
 LANG: en_US.UTF-8
 TZ: America/Vancouver
 volumes:
 - /etc/grid-security
 - /cvmfs
 - /home
 - /opt/glite
 - /opt/Atlas ## a few local config files

 - set_fact: oldname="{{ ansible_docker_container.Config.Hostname }}"
 - set_fact: thishost="{{ lookup('dig', '{{ansible_docker_container.NetworkSettings.IPAddress }}/PTR') }}"

 - name: Rename container
 command: docker rename {{ oldname }} {{ thishost|regex_replace('.$', '') }}

Here is an Ansible playbook which runs a command on demand; the container's hostname which is as-
sociated with this worker node is in the Ansible inventory as 'my_container':

run any command inside the container and view the output
cat docker-command.yml

Usage:
ansible-playbook THIS_FILE -e "target='wns0001' cmd='/bin/date'"
#

- name: Send command to a docker container
 hosts: "{{ target }}"
 gather_facts: false
 user: root
 vars:

26 Configuration Management

Version 1 Docker Containers

 tasks:
 - name: Only run if this is a docker engine
 fail: msg="This is not a docker engine"
 when: not is_docker_engine

 - name: Run a command inside a container
 command: docker exec -i '{{ my_container }}' {{ cmd }}
 register: dout

 - debug: var=dout.stdout_lines

9 Next Steps

So far we have only used containers to run a condor-based worker node environment at the Tier-1.
Aside from getting more experience with running containers for ATLAS jobs, we also need look at
maintenance issues and logging. Finally, it would be interesting to also look at Docker Registry
configured as a cache – we have not done this yet.

9.1 Logging

We will want to capture logs from containers in a production environment. There are a number of
logging options1 that need to be investigated. Another option is to create container-named sub-di-
rectories in /var/log/ on the Engine host and bind-mount those volumes to the container – for exam-
ple – capturing the container's internal logs from /var/log/condor under a sub-directory on the
Docker Engine host at /var/log/SOME_NAME_timestamp/ or elsewhere as needed. This is easily
done with Ansible at container launch time.

9.2 Image Maintenance and Tracking

We will need a plan on how images are maintained and tracked:

• When and where do we patch the images? Should they be patched at the registry hub, or
would you update them inside the container before launching the application?

• How will we track changes? Should images, or just their scripts, and/or their signature
hashes be tracked in a version control system?

• What monitoring tools do we need?

1 https://docs.docker.com/engine/admin/logging/overview/

Docker Implementation 27

https://docs.docker.com/engine/admin/logging/overview/

 Glossary Version 1

10 Glossary

There are a number of technologies associated with Docker that are not mentioned in this document.
Here I will provide in the near future a short reference of terms you may come across in your re-
search, or even in this document, with a short definition of each. For now I just list some of the
terms.

➢ Docker Compose

 Compose is a tool for defining and running multi-container Docker applications.

 Ref: https://github.com/docker/compose

 Ref: https://github.com/docker/docker.github.io/blob/master/compose/compose-file/index.md

➢ atomic

➢ cockpit

➢ etcd

➢ flannel

➢ koji

➢ runc

➢ skopeo

➢ Notary

10.1 Orchestrators

Launch and manage a cluster of containers.

➢ Docker Swarm

 Docker Swarm 'standalone' is a native clustering system for Docker; it typically turns a pool
of Docker hosts into a single, virtual host using an API proxy system. It is the original or-
chestration project from Docker.

 It is now part of Docker Engine, starting at Docker version 1.12.

 Ref: https://docs.docker.com/engine/swarm/

➢ Apache Mesos

 Mesos manages computer clusters. It consists of a master daemon that manages agents run-
ning on each cluster node, and Mesos frameworks which run tasks on these agents. A

28 Configuration Management

https://docs.docker.com/engine/swarm/
https://github.com/docker/docker.github.io/blob/master/compose/compose-file/index.md
https://github.com/docker/compose

Version 1 Glossary

framework running on top of Mesos consists of two components: a scheduler that registers
with the master to be offered resources, and an executor process that is launched on agent
nodes to run the framework's tasks. Mesos has a Docker executor; thus Mesos can manage
a cluster of such containers. Docker containers are natively supported by Mesos starting at
version 0.20.0.

 Ref: https://mesosphere.com/blog/2013/09/26/docker-on-mesos/

➢ Kubernetes

 Kubernetes was originally developed by Google to manage clusters of containerized appli-
cations; naturally it also supports Docker. Some other technologies are required to use Ku-
bernetes – etcd, flannel – they are defined in the glossary.

 Ref: https://en.wikipedia.org/wiki/Kubernetes

Some interesting links:

https://technologyconversations.com/2015/11/04/docker-clustering-tools-compared-kubernetes-vs-docker-swarm/

11 Appendix

11.1 Configure systemd for auto cvmfs mounts

cat /etc/systemd/system/trigger-cvmfs-mount.service
[Unit]
After=autofs.service

[Service]
ExecStart=/root/bin/trigger-cvmfs-mount.sh

[Install]
WantedBy=default.target

cat /root/bin/trigger-cvmfs-mount.sh

#!/bin/sh

list major cvmfs mount points on docker container worker nodes
/bin/ls /cvmfs/atlas.cern.ch/ /cvmfs/atlas-condb.cern.ch/ \
 /cvmfs/atlas-nightlies.cern.ch/ /cvmfs/cvmfs-config.cern.ch/ \
 /cvmfs/sft.cern.ch >/dev/null 2>&1

Then just enable the service:
systemctl enable trigger-cvmfs-mount

Docker Implementation 29

https://technologyconversations.com/2015/11/04/docker-clustering-tools-compared-kubernetes-vs-docker-swarm/
https://en.wikipedia.org/wiki/Kubernetes
https://mesosphere.com/blog/2013/09/26/docker-on-mesos/

